Add like
Add dislike
Add to saved papers

Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals.

Physical Review Letters 2017 October 28
In condensed matter physics, the term "chiral anomaly" implies the violation of the separate number conservation laws of Weyl fermions of different chiralities in the presence of parallel electric and magnetic fields. One effect of the chiral anomaly in the recently discovered Dirac and Weyl semimetals is a positive longitudinal magnetoconductance. Here we show that chiral anomaly and nontrivial Berry curvature effects engender another striking effect in Weyl semimetals, the planar Hall effect (PHE). Remarkably, the PHE manifests itself when the applied current, magnetic field, and the induced transverse "Hall" voltage all lie in the same plane, precisely in a configuration in which the conventional Hall effect vanishes. In this work we treat the PHE quasiclassically, and predict specific experimental signatures for type-I and type-II Weyl semimetals that can be directly checked in experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app