Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Association between serum neuron-specific enolase, age, overweight, and structural MRI patterns in 901 subjects.

Translational Psychiatry 2017 December 9
Serum neuron-specific enolase (sNSE) is considered a marker for neuronal damage, related to gray matter structures. Previous studies indicated its potential as marker for structural and functional damage in conditions with adverse effects to the brain like obesity and dementia. In the present study, we investigated the putative association between sNSE levels, body mass index (BMI), total gray matter volume (GMV), and magnetic resonance imaging-based indices of aging as well as Alzheimer's disease (AD)-like patterns.

SUBJECTS/METHODS: sNSE was determined in 901 subjects (499 women, 22-81 years, BMI 18-48 kg/m2 ), participating in a population-based study (SHIP-TREND). We report age-specific patterns of sNSE levels between males and females. Females showed augmenting, males decreasing sNSE levels associated with age (males: p = 0.1052, females: p = 0.0363). sNSE levels and BMI were non-linearly associated, showing a parabolic association and decreasing sNSE levels at BMI values >25 (p = 0.0056). In contrast to our hypotheses, sNSE levels were not associated with total GMV, aging, or AD-like patterns. Pathomechanisms discussed are: sex-specific hormonal differences, neuronal damage/differentiation, or impaired cerebral glucose metabolism. We assume a sex-dependence of age-related effects to the brain. Further, we propose in accordance to previous studies an actual neuronal damage in the early stages of obesity. However, with progression of overweight, we assume more profound effects of excess body fat to the brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app