Add like
Add dislike
Add to saved papers

CO ligands stabilize metal chalcogenide Co 6 Se 8 (CO) n clusters via demagnetization.

The role of carbon monoxide ligands on the magnetic moment of Co6 Se8 (CO)n clusters, n = 0-6 was investigated to better understand the interplay between the electronic structure of metal chalcogenide clusters and their ligands. We find that the addition of CO ligands to Co6 Se8 results in the gradual demagnetization of the cluster. Generally, the addition of a CO ligand effectively adds two electrons to the cluster that occupy deeper states and further pushes up an antibonding orbital out of the valence manifold of cluster states. Through such processes, the fully ligated Co6 Se8 (CO)6 cluster attains a closed electronic shell with a large gap between occupied and unoccupied states. Each removal of a CO ligand from the cluster then stabilizes an antibonding state that adds unoccupied states to the valence manifold. Such a cluster with partially filled states may either deform as in a Jahn-Teller distortion to quench the spin, or maintain its core structure and be stabilized in a high spin state as in Hund's rules. As these clusters generally maintain their octahedral core, the high spin state prevails and the removal of the ligands results in an increase in spin multiplicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app