Add like
Add dislike
Add to saved papers

Effective component of Salvia miltiorrhiza in promoting cardiomyogenic differentiation of human placenta‑derived mesenchymal stem cells.

Our previous study indicated that Salvia miltiorrhiza (SM) induced human placenta‑derived mesenchymal stem cells (hPDMSCs) to differentiate into cardiomyocytes, however, the effective component of SM in promoting cardiomyogenic differentiation remained to be elucidated. In the present study, the most commonly examined components of SM, including danshensu, salvianolic acid B, protocatechuic aldehyde, tanshinone I (TS I), TS IIA and cryptotanshinone, were used to determine the effective components of SM in promoting cardiomyogenic differentiation. The above components of SM slowed cell growth rate and altered cell morphology with a spindle or irregular shape to different degrees. The cells treated with the above components of SM showed increasing of cardiac protein expression to differing degrees, including GATA‑binding protein 4, atrial natriuretic factor, α‑sarcomeric actin and cardiac troponin‑I. Among the components of SM, TS IIA induced the most marked effects. In addition, the above components of SM increased the expression of phosphorylated glycogen synthase kinase‑3β, but decreased the expression of β‑catenin to different degrees, with TS IIA also having the most marked effects. In conclusion, the results of the present study suggested that TS IIA was the most effective active component of SM in inducing hPDMSCs to differentiate into cardiomyocytes, and that Wnt/β‑catenin signaling was important in the process of TS IIA promoting cardiomyogenic differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app