Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A High-Sensitivity, Microtiter-Based Plate Assay for Plant Pattern-Triggered Immunity.

The first step in the plant immune response to pathogen challenge involves the perception of conserved epitopes, called microbe-associated molecular patterns (MAMPs), by cell-surface pattern recognition receptors (PRRs). Given the key roles that MAMPs and PRRs play in plant innate immunity, great effort has been expended to identify these molecules. Current methods for assaying these immune responses are often limited in their resolution and throughput, and consequently, there is a need for medium- to high-throughput methodologies. Here, we describe the development of a 96-well microtiter plate-based assay for plant pattern-triggered immunity that measures the activity of plant peroxidase (POX) enzymes produced in response to treatment with bacterial MAMPs. The system has been optimized to minimize both the amount of plant tissue and MAMPs required and displays up to three orders of magnitude greater sensitivity than the traditional luminol-based reactive oxygen species assay when measuring the plant response to treatment with the bacterial MAMP flg22, reaching detection limits in the picomolar range. This high sensitivity opens the possibility of evaluating the immune-eliciting effects of weaker elicitors. The throughput and material requirements of the assay make it ideal for screens involving quantitative measurement of the plant innate immune response to MAMPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app