Add like
Add dislike
Add to saved papers

Sodium Metabisulfite: Effects on Ionic Currents and Excitotoxicity.

How sodium metabisulfite (SMB; Na2 S2 O5 ), a popular food preservative and antioxidant, interacts with excitable membrane and induces excitotoxicity is incompletely understood. In this study, the patch-clamp technique was used to investigate and record the electrophysiological effect of SMB on electrically excitable HL-1 cardiomyocytes and NSC-34 neurons, as well as its relationship to pilocarpine-induced seizures and neuronal excitotoxicity in rats. We used Western blotting, to analyze sodium channel expression on hippocampi after chronic SMB treatment. It was found that voltage-gated Na+ current (I Na ) was stimulated, and current inactivation and deactivation were slowed in SMB-treated (30 μM) HL-1 cardiomyocytes. SMB-induced increases of I Na were attenuated in cells treated with ranolazine (10 μM) or eugenol (30 μM). The current-voltage relationship of I Na shifted to slightly more negative potentials in SMB-treated cells, the peak I Na with an EC50 value of 18 μM increased, and the steady-state inactivation curve of I Na shifted to a more positive potential. However, the tail component of the rapidly activating delayed-rectifier K+ current (I Kr ) was dose-dependently inhibited. Cell-attached voltage-clamp recordings in SMB-treated cells showed that the frequency of action currents and prolonged action potential were higher. In SMB-treated NSC-34 neurons, the peak I Na was higher; however, neither the time to peak nor the inactivation time constant (I Na ) changed. Pilocarpine-induced seizures were exacerbated, and acute neuronal damage and chronic mossy fiber sprouting increased in SMB-treated rats. Western blotting showed higher expression of the sodium channel in cells after chronic SMB treatment. We conclude that SMB contributes to the sodium channel-activating mechanism through which it alters cellular excitability and excitotoxicity in wide-spectrum excitable cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app