Add like
Add dislike
Add to saved papers

Diabetes induces mitochondrial dysfunction and alters cholesterol homeostasis and neurosteroidogenesis in the rat cerebral cortex.

The nervous system synthesizes and metabolizes steroids (i.e., neurosteroidogenesis). Recent observations indicate that neurosteroidogenesis is affected by different nervous pathologies. Among these, long-term type 1 diabetes, together with other functional and biochemical changes, has been shown to alter neuroactive steroid levels in the nervous system. Using an experimental model of type 1 diabetes (i.e., streptozotocin injection) we here show that the levels of these molecules are already decreased in the rat cerebral cortex after one month of the initiation of the pathology. Moreover, decreased levels of free cholesterol, together with alterations in the expression of molecules involved in cholesterol biosynthesis, bioavailability, trafficking and metabolism were detected in the rat cerebral cortex after one month of diabetes. Furthermore, mitochondrial functionality was also affected in the cerebral cortex and consequently may also contribute to the decrease in neuroactive steroid levels. Altogether, these results indicate that neurosteroidogenesis is an early target for the effect of type 1 diabetes in the cerebral cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app