Add like
Add dislike
Add to saved papers

Maximum-likelihood approaches reveal signatures of positive selection in BMP15 and GDF9 genes modulating ovarian function in mammalian female fertility.

Ecology and Evolution 2017 November
Bone morphogenetic proteins (BMPs) and the growth factors (GDFs) play an important role in ovarian folliculogenesis and essential regulator of processes of numerous granulosa cells. BMP15 gene variations linked to various ovarian phenotypic consequences subject to the species, from infertility to improved prolificacy in sheep, primary ovarian insufficiency in women or associated with minor subfertility in mouse. To study the evolving role of BMP15 and GDF9, a phylogenetic analysis was performed. To find out the candidate gene associated with prolificacy in mammals, the nucleotide sequence of BMP15 and GDF9 genes was recognized under positive selection in various mammalian species. Maximum-likelihood approaches used on BMP15 and GDF9 genes exhibited a robust divergence and a prompted evolution as compared to other TGFβ family members. Furthermore, among 32 mammalian species, we identified positive selection signals in the hominidae clade resulting to 132D, 147E, 163Y, 191W, and 236P codon sites of BMP15 and 162F, 188K, 206R, 240A, 244L, 246H, 248S, 251D, 253L, 254F and other codon sites of GDF9. The positively selected amino acid sites such as Alanine, Lucien, Arginine, and lysine are important for signaling. In conclusion, this study evidences that GDF9 and BMP15 genes have rapid evolution than other TGFß family members and was subjected to positive selection in the mammalian clade. Selected sites under the positive selection are of remarkable significance for the particular functioning of the protein and consequently for female fertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app