Add like
Add dislike
Add to saved papers

Effects and Interactions of Prenatal Ethanol Exposure, a Post-Weaning High-Fat Diet and Gender on Adult Hypercholesterolemia Occurrence in Offspring Rats.

BACKGROUND/AIMS: Prenatal ethanol exposure (PEE) could induce intrauterine programming of hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolism, resulting in intrauterine growth retardation and susceptibility to adult hypercholesterolemia in offspring. This study aimed to analyse the effects and interactions of PEE, a post-weaning high-fat diet (HFD) and gender on the occurrence of adult hypercholesterolemia in offspring rats.

METHODS: Wistar female rats were treated with ethanol (4 g/kg.d) at gestational days 11-20. The offspring were given a normal diet or HFD after weaning, and the blood cholesterol metabolism phenotype and expression of hepatic cholesterol metabolism related genes were detected in 24-week-old offspring. Furthermore, the interactions among PEE, HFD, and gender on hypercholesterolemia occurrence were analysed.

RESULTS: PEE increased the serum total cholesterol (TCH) and low-density lipoprotein-cholesterol (LDL-C) levels and decreased the serum high-density lipoprotein-cholesterol (HDL-C) level in adult offspring rats; the changes in female offspring were greater than those in males. At the same time, the mRNA expression levels of hepatic cholesterol metabolic enzymes (apolipoprotein B (ApoB) and 7α-hydroxylase (CYP7A1))-were increased, while the mRNA expression levels of the scavenger receptor B1 (SR-B1) and LDL receptor (LDLR) were decreased. Furthermore, a three-way ANOVA showed there were interactions among PEE, post-weaning HFD and gender. For PEE offspring, a post-weaning HFD aggravated the elevated hepatic ApoB and CYP7A1 expression and reduced SR-B1 and LDLR expression; the changes in hepatic SR-B1 and CYP7A1 expression were greater in female HFD rats than in males.

CONCLUSION: Our findings suggest that a post-weaning HFD could aggravate offspring hypercholesterolemia caused by PEE and that this mechanism might be associated with hepatic cholesterol metabolic disorders that are aggravated by a post-weaning HFD; hepatic cholesterol metabolism was more sensitive to neuroendocrine metabolic alterations by PEE and a post-weaning HFD in the female offspring than in the male offspring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app