Add like
Add dislike
Add to saved papers

The Corticospinal Reserve Capacity: Reorganization of Motor Area and Excitability As a Novel Pathophysiological Concept in Cervical Myelopathy.

Neurosurgery 2018 October 2
BACKGROUND: In degenerative cervical myelopathy (DCM), the dynamics of disease progression and the outcome after surgical decompression vary interindividually and do not necessarily correlate with radiological findings.

OBJECTIVE: To improve diagnostic power in DCM by better characterization of the underlying pathophysiology using navigated transcranial magnetic stimulation (nTMS).

METHODS: Eighteen patients with DCM due to cervical spinal canal stenosis were examined preoperatively with nTMS. On the basis of the initial Japanese Orthopedic Association (JOA) Score, 2 patient groups were established (JOA ≤12/>12). We determined the resting motor threshold, recruitment curve, cortical silent period, and motor area. Accordingly, 8 healthy subjects were examined.

RESULTS: Although the resting motor threshold was comparable in both groups (P = .578), the corticospinal excitability estimated by the recruitment curve was reduced in patients (P = .022). In patients with only mild symptoms (JOA > 12), a compensatory higher activation of non-primary motor areas was detected (P < .005). In contrast, patients with severe impairment (JOA ≤ 12) showed a higher cortical inhibition (P < .05) and reduced cortical motor area (P < .05) revealing a functional restriction on the cortical level.

CONCLUSION: Based on these results, we propose a new concept for functional compensation for DCM on the cortical and spinal level, ie corticospinal reserve capacity. nTMS is a useful tool to noninvasively characterize the pattern of functional impairment and compensatory reorganization in patients suffering from DCM. The change in nTMS parameters might serve as a valuable prognostic factor in these patients in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app