Add like
Add dislike
Add to saved papers

Reversibly photo-switchable wettability of stearic acid monolayer modified bismuth-based micro-/nanomaterials.

In this work, we demonstrated a general approach to realize superhydrophobic-superhydrophilic reversible transition over hydrophilic bismuth-related micro-/nanomaterials. Different superhydrophobic bismuth-based micro-/nanomaterials, including BiOCOOH, Bi2 O3 , (BiO)2 CO3 and BiOCl, were obtained by modification with stearic acid, regardless of their morphologies. The reversible wettability of the bismuth-related materials upon alternative UV-vis irradiation and dark storage were investigated via cyclic experiments. The results indicated that the reversible wetting behavior was highly related with the photocatalytic activities of the bismuth-based materials. High photocatalytic activity resulted in less reversible cycles between superhydrophobicity and superhydrophilicity due to the photodegradation of stearic acid. Moreover, with the increase of cycle number, the required minimal time for photo-induced superhydrophilicity decreased and the minimal time for the recovery of superhydrophobicity under dark storage increased. Based on peak deconvolution analysis of XPS and FTIR spectra, a comprehensive understanding of reversible wettability of the bismuth-related micro-/nanomaterials was proposed. This work provides a new strategy to fabricate superhydrophobic-superhydrophilic switchable surfaces for most hydrophilic inorganic materials with different morphologies and photocatalytic activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app