Add like
Add dislike
Add to saved papers

TSH-independent release of thyroid hormones through cold exposure in aging rats.

Oncotarget 2017 October 28
Thyroid function decreases and cold exposure response becomes impaired with increasing age. We investigated the age-related changes in thyroid structure and function and cold-induced changes in the thyroid activity of aging rats. Thirty-two male Sprague-Dawley rats were randomly divided into four groups (8 rats per group): young (7 months) and old (22 months) groups exposed to room temperature and cold stress. The active follicle ratio and serum free T3, T4 and TSH, and TSH receptor (TSHR) concentrations in the thyroid tissues of the rats from each group were compared. At room temperature, old rats had significantly lower active follicle ratio and free T3 and T4 concentrations than young rats. Furthermore, old rats displayed higher TSH level than young. Exposure to cold temperature led to significantly increased active colloid ratio and free T3 and T4 concentrations among old rats, but no significant differences were found among young rats. Additionally, no significant changes in the TSH and TSHR levels were observed after cold exposure in both young and old rats. Old rats have lower thyroid function than young rats under normal temperature. Aging rats are more susceptible to cold stress than young rats, and cold-induced thyroid activation occurs independently of TSH. We investigated the age-related changes in the thyroid structure and function and cold-induced changes in the thyroid activity of aging rats. Aging rats have structurally less active thyroid follicles and functionally lower thyroid hormone levels than young rats. Furthermore, old rats are more susceptible to cold stress than young rats, and cold-induced thyroid activation occurs independently of TSH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app