Add like
Add dislike
Add to saved papers

LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93.

It has been reported that lncRNA myocardial infarction-associated transcript (MIAT) facilitated the pathological development in angiotensin II (AngII)-induced cardiac hypertrophy. Nevertheless, the underlying mechanism of MIAT involved in cardiac hypertrophy is largely unknown. In this study, AngII-treated cardiomyocytes were applied as a cardiac hypertrophy model in vitro. The expressions of MIAT and miR-93 were detected by qRT-PCR. The protein levels of toll-like receptor 4 (TLR4), atrial natriuretic factor (ANF), beta-myosin heavy chain (β-MHC), phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), phosphorylated Akt (p-Akt), mammalian target of rapamycin (mTOR), and phosphorylated mTOR (p-mTOR) were determined by western blot. Luciferase reporter assay and RNA immunoprecipitation (RIP) were performed to explore the relationship between MIAT, TLR4 and miR-93. Hypertrophic response was assessed by measuring cell surface area and quantifying the expressions of ANF and β-MHC. The results demonstrated that MIAT was upregulated and miR-93 was downregulated in AngII-treated cardiomyocytes. MIAT functioned as a molecular sponge of miR-93 in cardiomyocytes. Additionally, TLR4 was identified as a target of miR-93 and MIAT promoted TLR4 expression by sponging miR-93. MIAT knockdown decreased cell surface area and the expression levels of ANF and β-MHC in AngII-treated cardiomyocytes by modulating miR-93. Moreover, enforced expression of TLR4 partially reversed the protective effect of miR-93 overexpression on AngII-induced cardiac hypertrophy. Furthermore, MIAT knockdown or miR-93 overexpression inactivated the PI3K/Akt/mTOR pathway via TLR4 in AngII-induced cardiac hypertrophy. Taken together, these data suggested that MIAT knockdown inhibited AngII-induced cardiac hypertrophy by regulating miR-93/TLR4 axis, highlighting a promising therapy target for cardiac hypertrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app