Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway.

Redox Biology 2018 April
The activation of microglial NADPH oxidase (NOX2) induced by α-synuclein has been implicated in Parkinson's disease (PD) and other synucleinopathies. However, how α-synuclein activates NOX2 remains unclear. Previous study revealed that both toll-like receptor 2 (TLR2) and integrin play important roles in α-synuclein-induced microglial activation. In this study, we found that blocking CD11b, the α chain of integrin αM β2 , but not TLR2 attenuated α-synuclein-induced NOX2 activation in microglia. The involvement of CD11b in α-synuclein-induced activation of NOX2 was further confirmed in CD11b-/- microglia by showing reduced membrane translocation of NOX2 cytosolic subunit p47phox and superoxide production. Mechanistically, α-synuclein bound to CD11b and subsequently activated Rho signaling pathway. α-Synuclein induced activation of RhoA and downstream ROCK but not Rac1 in a CD11b-dependent manner. Moreover, siRNA-mediated knockdown of RhoA impeded NOX2 activation in response to α-synuclein. Furthermore, we found that inhibition of NOX2 failed to interfere with the activation of RhoA signaling and interactions between α-synuclein and CD11b, further confirming that NOX2 was the downstream target of CD11b. Finally, we found that genetic deletion of CD11b abrogated α-synuclein-induced NOX2 activatoin in vivo. Taken together, our results indicated that integrin CD11b mediates α-synuclein-induced NOX2 activation through a RhoA-dependent pathway, providing not only a novel mechanistic insight but also a new potential therapeutic target for synucleinopathies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app