Comparative Study
Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Impact of noise-optimized virtual monoenergetic dual-energy computed tomography on image quality in patients with renal cell carcinoma.

OBJECTIVE: The aim of this study was to evaluate the impact of a noise-optimized virtual monoenergetic imaging (VMI+) reconstruction technique on image quality and lesion delineation in patients with renal cell carcinoma (RCC) undergoing abdominal dual-energy computed tomography (DECT).

MATERIALS AND METHODS: Fifty-two patients (33 men; 61.5±13.6years) with RCC underwent contrast-enhanced DECT during the corticomedullary and nephrogenic phase of renal enhancement. DECT datasets were reconstructed with standard linearly-blended (M_0.6), as well as traditional virtual monoenergetic (VMI) and VMI+ algorithms in 10-keV increments from 40 to 100 keV. Contrast-to-noise (CNR) and tumor-to-cortex ratios for corticomedullary- and nephrogenic-phase images were objectively measured by a radiologist with 3 years of experience. Subjective image quality and RCC delineation were evaluated by three independent radiologists.

RESULTS: Greatest CNR values were found for 40-keV VMI+ series in both corticomedullary- (8.9±4.9) and nephrogenic-phase (7.1±4.6) images and were significantly higher compared to all other reconstructions (P<0.001). Furthermore, tumor-to-cortex ratios were highest for 40-keV nephrogenic-phase VMI+ (2.1±3.5; P≤0.016), followed by 50-keV and 60-keV VMI+ (2.0±3.2 and 1.8±2.8, respectively). Qualitative image quality scored highest for 50-keV VMI+ series in corticomedullary-phase reconstructions and 60-keV in nephrogenic-phase reconstructions (P≤0.031). Highest scores for lesion delineation were assigned for 40-keV VMI+ reconstructions (P≤0.074).

CONCLUSION: Low-keV VMI+ reconstructions lead to improved image quality and lesion delineation of corticomedullary- and nephrogenic-phase DECT datasets in patients with RCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app