Add like
Add dislike
Add to saved papers

Interrelationships among hydrogen permeation, physiochemical properties and early adsorption abilities of titanium.

This study aimed to investigate if the titanium samples with low hydrogen permeation which treated with a novel etching combination: phosphoric acid and sodium fluoride could influence the surface physiochemical properties and early adsorption ability. Titanium samples were treated with three different concentrations of the new formula, as groups A, B and C, and treated with the traditional etching formula, as group T. Zeta potential, contact angle, X-ray photoelectron spectroscopy (XPS) and fibronectin (FN)/vitronectin (VN) adsorption of Sprague-Dawley (SD) rat tibial osteotomies in the initial 30min and MG-63 adsorption in the initial 24 h were detected. Basing on the results of trails and pearson correlation analysis, the low hydrogen permeation into titanium didn't exert an impact on the surface morphology and surface stability. The adsorptions of F, P, S, acid hydroxyl and basic hydroxyl on the surfaces brought no bear on them as well. Surface concave depth and surface skewness showed highly positive correlation and moderate negative correlation with adsorption ability, respectively. Therefore, the surface morphology of titanium treated with the novel etching formula plays the only and primary role on the early adsorption. Because of its specific surface topography, group C showed the best performance which possessed slightly superiority than those of group B and group T, and with the lowest being group A. The low hydrogen permeation into titanium substrate was just benefit for improving the titanium mechanical properties, but not for the surface biochemical traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app