Journal Article
Review
Add like
Add dislike
Add to saved papers

Mouse models to evaluate the role of estrogen receptor α in skeletal maintenance and adaptation.

Estrogen signaling and mechanical loading have individual and combined effects on skeletal maintenance and adaptation. Previous work investigating estrogen signaling both in vitro and in vivo using global estrogen receptor α (ERα) gene knockout mouse models has provided information regarding the role of ERα in regulating bone mass and adaptation to mechanical stimulation. However, these models have inherent limitations that confound interpretation of the data. Therefore, recent studies have focused on mice with targeted deletion of ERα from specific bone cells and their precursors. Cell stage, tissue type, and mouse sex all influence the effects of ERα gene deletion. Lack of ERα in osteoblast progenitor and precursor cells generally affects the periosteum of female and male mice. The absence of ERα in differentiated osteoblasts, osteocytes, and osteoclasts in mice generally resulted in reduced cancellous bone mass, with differing reports of the effect by animal sex and greater deficiencies in bone mass typically occurring in cancellous bone in female mice. Limited data exist for the role of bone cell-specific ERα in skeletal adaptation in vivo. Cell-specific ERα gene knockout mice provide an excellent platform for investigating the function of ERα in regulating skeletal phenotype and response to mechanical loading by sex and age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app