Add like
Add dislike
Add to saved papers

Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo.

The wide use of the alternatives to bisphenol A (BPA) has raised concerns about their potential toxicities. Considering the disrupting activity of BPA on thyroid hormone (TH) signaling, we investigated whether bisphenol S (BPS) and bisphenol F (BPF), two leading alternatives, could interfere with TH signaling pathway using a series of assays in vitro and in vivo. In the fluorescence competitive binding assay, we found BPS and BPF, like BPA, bound to TH receptors (TRα and TRβ), with the binding potencies an order of magnitude lower than BPA (BPA > BPF > BPS). Molecular docking data also show their binding potencies to TRs. In the coactivator recruitment assay, BPS and BPF recruited coactivator to TRβ but not TRα, with weaker potencies than BPA. Correspondingly, agonistic actions of the three bisphenols in the absence or presence of T3 were observed in the TR-mediated reporter gene transcription assay. Also, all the three bisphenols induced TH-dependent GH3 cell proliferation, whereas BPA and BPF inhibited T3 induction in the presence of T3. As for in vivo assay, the three bisphenols like T3 induced TH-response gene transcription in Pelophylax nigromaculatus tadpoles, but in the presence of T3 altered T3-induced gene transcription in a biphasic concentration-response manner. These results for the first time demonstrate that BPS and BPF, like BPA, have potential to interfere with TH signaling pathway, i.e., they generally activate TH signaling in the absence of T3, but in the presence of TH, display agonistic or/and antagonistic actions under certain condition. Our study highlights the potential risks of BPS and BPF as BPA alternatives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app