Add like
Add dislike
Add to saved papers

Analysis of Free Amino Acids in Different Extracts of Orthosiphon stamineus Leaves by High-Performance Liquid Chromatography Combined with Solid-Phase Extraction.

Background: Orthosiphon stamineus (OS) Benth is a medicinal plant and native in Southeast Asia. Previous studies have shown that OS leaves possess antioxidant, cytotoxic, diuretic, antihypertensive, and uricosuric effects. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids, and flavonoids.

Objective: To develop and validate an high-performance liquid chromatography (HPLC)-diode array detector (DAD) method combined with solid-phase extraction that involves precolumn derivatization with O -phthaladehyde for simultaneous analysis of free amino acids in OS leaves extracts.

Materials and Methods: OS leaves were extracted with water (OS-W), ethanol (OS-E), methanol (OS-M), 50% ethanol (OS-EW), and 50% methanol (OS-MW). The extracts were treated by C18 cartridge before derivatization, resulting in great improvement of separation by Zorbox Eclipse XDB-C18 column.

Results: The HPLC-DAD method was successfully developed and validated for analyzing the contents of free amino acids in OS extracts. The results showed that l-aspartic acid with 0.93 ± 0.01 nmol/mg was the major free amino acid in OS-W extract. However, in OS-E, OS-M, OS-EW, and OS-MW, l-glutamic acid with 3.53 ± 0.16, 2.17 ± 0.10, 4.01 ± 0.12, and 2.49 ± 0.12 nmol/mg, respectively, was the major free amino acid. Subsequently, l-serine, which was detected in OS-W, OS-E, and OS-M, was the minor free amino acid with 0.33 ± 0.02, 0.12 ± 0.01, and 0.06 ± 0.01 nmol/mg, respectively. However, l-threonine with 0.26 ± 0.02 and 0.19 ± 0.08 nmol/mL in OS-EW and OS-MW, respectively, had the lowest concentration compared with other amino acid components.

Conclusion: All validation parameters of the developed method indicate that the method is reliable and efficient to simultaneously determine the free amino acids content for routine analysis of OS extracts.

SUMMARY: The HPLC-DAD method combined with solid phase extraction was successfully developed and validated for simultaneous determination and quantification of 17 free amino acids in Orthosiphon stamineus (OS) Benth extractsOS extracts were found to be rich in free amino acid contentL-aspartic acid was the major free amino acid in OS water extract while, in OS ethanol, methanol, 50% ethanol and 50% methanol extracts, L-glutamic acid was the major free amino acidL-serine was the minor free amino acid in OS water, ethanol and methanol extracts while, in OS 50% ethanol and 50% methanol extracts, L-threonine had the lowest concentration compared to other amino acid components. Abbreviations used: HPLC-DAD: High-Performance Liquid Chromatography with Diode-Array Detection, OS: Orthosiphon stamineus , OS-W: Orthosiphon stamineus water extract, OS-E: Orthosiphon stamineus ethanol extract, OS-M: Orthosiphon stamineus methanol extract, OS-EW: Orthosiphon stamineus 50% ethanol extract, OS-MW: Orthosiphon stamineus 50% methanol extract, OPA: O-phthaladehyde , SPE: Solid Phase Extraction, UV: Ultraviolet, LOD: Limit of Detection, LOQ: Limit of Quantification, RSD: Relative Standard Deviation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app