Add like
Add dislike
Add to saved papers

Triathlon transition study: quantifying differences in running movement pattern and precision after bike-run transition.

Various publications discuss the discrepancies of running in triathlons and stand-alone runs. However, those methods, such as analysing step-characteristics or ground-contact time, lack the ability to quantitatively discriminate between subtle running differences. The attractor method can be applied to overcome those shortcomings. The purpose was to detect differences in athletes' running patterns (δM) and movement precision (δD) by comparing a 5,000 m run after a prior cycling session (TRun) with an isolated run over the same distance (IRun). Participants completed the conditions on a track and a stationary trainer, allowing the use of their personal bike to simulate an Olympic triathlon. During each run, three-dimensional acceleration data, using sensors attached to the ankles, were collected. Results showed that both conditions lead to elevated attractor parameters (δM and δD) over the initial five minutes before the athletes found their rhythm. This generates a new perspective because independent of running after a bike session or without preload, an athlete needs certain time to adjust to the running movement. Coaches must consider this factor as another tool to fine-tune pacing and performance. Moreover, the attractor method is a novel approach to gain deeper insight into human cyclic motions in athletic contexts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app