Add like
Add dislike
Add to saved papers

Weak ferromagnetic ordering in brownmillerite Ca 2 Fe 2 O 5 and its effect on electric field gradients.

Brownmillerite Ca2 Fe2 O5 (CFO) exhibits a magnetic transition at TN ∼ 730 K. Many studies have reported the magnetic properties of CFO. However, the magnetic structure of CFO is still debated, i.e., whether the magnetic ordering is purely antiferromagnetic or weakly ferromagnetic, which originated from canted magnetic moments. In addition, the reason for the CFO showing large magnetoresistance is still unclear. This study attempts to address the unresolved issues stated above by multiple investigations on the crystal structure, magnetization, and Mössbauer parameters. Based on the results of the investigation, we conclude that the CFO is not purely antiferromagnetic but weakly ferromagnetic. That is the reason for the disappearance of the spontaneous magnetization at the magnetic critical temperature TN . The Mössbauer spectroscopy shows that the magnetic moments slightly cant against the a-direction, resulting in the presence of a net magnetic moment along the c-direction under the space group of Pnma. A reason for the canted magnetic moments is due to the presence of the Dzyalosinskii-Moriya (DM) interaction. The electric field gradient (EFG) refined from the Mössbauer spectroscopy investigated at 287 K is larger than that at 750 K, which is higher than TN . This suggests that the EFG changes below TN . A local electric polarization induced by the DM interaction is a possible reason for the change in the EFG. As a result, strong correlations between the magnetic ordering and the electrical properties appear in the CFO. The Arrhenius plot of the total electrical conductivity showed a kink at TN , which is one of these strong correlations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app