Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of 1 H + 16 O Charged Particle Irradiation on Short-Term Memory and Hippocampal Physiology in a Murine Model.

Radiation Research 2018 January
Radiation from galactic cosmic rays (GCR) poses a significant health risk for deep-space flight crews. GCR are unique in their extremely high-energy particles. With current spacecraft shielding technology, some of the predominant particles astronauts would be exposed to are 1 H + 16 O. Radiation has been shown to cause cognitive deficits in mice. The hippocampus plays a key role in memory and cognitive tasks; it receives information from the cortex, undergoes dendritic-dependent processing and then relays information back to the cortex. In this study, we investigated the effects of combined 1 H + 16 O irradiation on cognition and dendritic structures in the hippocampus of adult male mice three months postirradiation. Six-month-old male C57BL/6 mice were irradiated first with 1 H (0.5 Gy, 150 MeV/n) and 1 h later with 16 O (0.1 Gy, 600 MeV/n) at the NASA Space Radiation Laboratory (Upton, NY). Three months after irradiation, animals were tested for hippocampus-dependent cognitive performance using the Y-maze. Upon sacrifice, molecular and morphological assessments were performed on hippocampal tissues. During Y-maze testing, the irradiated mice failed to distinguish the novel arm, spending approximately the same amount of time in all three arms during the retention trial relative to sham-treated controls. Irradiated animals also showed changes in expression of glutamate receptor subunits and synaptic density-associated proteins. 1 H + 16 O radiation compromised dendritic morphology in the cornu ammonis 1 and dentate gyrus within the hippocampus. These data indicate cognitive injuries due to 1 H + 16 O at three months postirradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app