Add like
Add dislike
Add to saved papers

Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media.

Plasmonic compound nanoparticles (NPs) have attracted great interest because they are prepared at lower cost and show unique optical properties. However, full replacement of the plasmonic noble metal NPs with the compound NPs has been difficult because most of the compound NPs exhibit plasmon resonance in the infrared range owing to low free carrier density and mobility. In order to overcome this limitation, we developed a new synthetic method for plasmonic MoO2 and MoO3-x NPs. Those NPs exhibit plasmon resonance at ∼500 nm and 600-1000 nm, respectively, likely because of high carrier densities. The plasmonic properties of the NPs are tunable by changing the synthetic conditions or oxidizing and reducing the NPs. Their refractive index sensitivities are 115-260 nm RIU-1 . Those molybdenum oxide NPs are expected to substitute for plasmonic noble metal NPs in optical, electronic, sensing and light harvesting devices and materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app