Add like
Add dislike
Add to saved papers

Blockade of Experimental Multiple Sclerosis by Inhibition of the Acid Sphingomyelinase/Ceramide System.

BACKGROUND: Multiple sclerosis (MS) is a severe and common autoimmune disorder of the central nervous system. Despite the availability of several novel treatment options, the disease is still poorly controlled, since the pathophysiological mechanisms are not fully understood.

METHODS: We tested the role of the acid sphingomyelinase/ceramide system in a model of MS, i.e. experimental autoimmune encephalomyelitis (EAE). Mice were immunized with myelin-oligodendrocyte glycoprotein and the development of the disease was analyzed by histology, immunological tests and clinical assessment in wildtype and acid sphingomyelinase (Asm)-deficient mice.

RESULTS: Genetic deficiency of acid sphingomyelinase (Asm) protected against clinical symptoms in EAE and markedly attenuated the characteristic detrimental neuroinflammatory response. T lymphocyte adhesion, integrity of tight junctions, blood-brain barrier disruption and subsequent intracerebral infiltration of inflammatory cells were blocked in Asm-deficient mice after immunization. This resulted in an almost complete block of the development of disease symptoms in these mice, while wildtype mice showed severe neurological symptoms typical for EAE.

CONCLUSION: Activation of the Asm/ceramide system is a central step for the development of EAE. Our findings may serve to identify novel therapeutic strategies for MS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app