Journal Article
Research Support, Non-U.S. Gov't
Retracted Publication
Add like
Add dislike
Add to saved papers

PRMT1 mediates podocyte injury and glomerular fibrosis through phosphorylation of ERK pathway.

Diabetic nephropathy (DN) is characterized by a change of glomerular structure and dysfunction of filtration barrier, which significantly accompanied by podocytes apoptosis and glomerular fibrosis. Angiotensin Ⅱ(Ang Ⅱ) induced activation of ERK1/2 signaling plays important roles in causing apoptosis of podocytes in DN kidneys. Previous studies have shown that PRMT1 have a pro-inflammatory function through activating ERK1/2 signaling pathway during development of chronic pulmonary disease, however, its role in DN development has not been investigated. Here, we detected a higher expression of PRMT1 in podocytes of kidneys from DN patients compared with normal kidneys. High glucose administration induced elevation of PRMT1 expression in podocytes, accompanied with higher phosphorylation of ERK and cleaved caspase-3. AMI-1, a selective inhibitor for PRMT1, could block these effects caused by glucose treatment. Administration of AMI-1 also attenuated apoptosis of podocytes during DN development of high-fatty diet-induced diabetic mice. Epithelial to mesenchymal transition during DN development, which characterized by extracellular matrix deposition in podocytes, was also restrained by AMI-1 treatment. Collectively, this study firstly demonstrated that PRMT1 exert podocyte-injury effects in mouse glomerulus through Ang Ⅱ/ERK pathway, which reveals a potential therapeutic target for DN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app