Add like
Add dislike
Add to saved papers

A mechanically strengthened polyacrylamide gel matrix fully compatible with electrophoresis of proteins and nucleic acids.

Electrophoresis 2018 March
Polyacrylamide gel electrophoresis is a universal tool in a biochemist's toolkit for protein and nucleic acid separation and subsequent visualisation and analysis. The standard formulation of polyacrylamide gels consists of acrylamide (ACM) monomer crosslinked with bisacrylamide (MBA) which creates a gel with excellent sieving properties but which is mechanically fragile and prone to tearing during post-electrophoresis manipulations involved in visualisation and analysis. By adding a poly(ethylene oxide) macro-crosslinker to the standard gel formulation, we have created a tough gel matrix that can be used to fractionate proteins and nucleic acids by polyacrylamide gel electrophoresis. The protein and nucleic acid resolving capabilities and performance during staining and electroblotting of the tough gel matrix rivals that of conventional acrylamide/bisacrylamide gels. The tough gel matrix is resistant to tear and remarkably elastic, capable of stretching to over four times its original length before breaking, and represents a significant improvement over standard polyacrylamide gel formulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app