Add like
Add dislike
Add to saved papers

Absorption Properties of Luteolin and Apigenin in Genkwa Flos Using In Situ Single-Pass Intestinal Perfusion System in the Rat.

The flower bud of Daphne genkwa (Genkwa Flos) is a commonly used herbal medicine in Asian countries. Luteolin and apigenin are two recognized active flavonoids in Genkwa Flos. The aim of this study was to investigate the intestinal absorption mechanisms of Genkwa Flos flavonoids using in situ single-pass intestinal perfusion rat model. Using HPLC, we determined its major effective flavonoids luteolin, apigenin, as well as, hydroxygenkwanin and genkwanin in biological samples. The intestinal absorption mechanisms of the total flavonoids in Genkwa Flos (TFG) were investigated using in situ single-pass intestinal perfusion rat model. Comparing the TFG absorption rate in different intestinal segments, data showed that the small intestine absorption was significantly higher than that of the colon ([Formula: see text]). Compared with duodenum and ileum, the jejunum was the best small intestinal site for TFG absorption. The high TFG concentration (61.48[Formula: see text][Formula: see text]g/ml) yielded the highest permeability ([Formula: see text]). Subsequently, three membrane protein inhibitors (verapamil, pantoprazole and probenecid) were used to explore the TFG absorption pathways. Data showed probenecid, a multidrug resistance protein (or MRP) inhibitor, effectively enhanced the TFG absorption ([Formula: see text]). Furthermore, by comparing commonly used natural absorption enhancers on TFG, it was observed that camphor was the most effective. In Situ single-pass intestinal perfusion experiment shows that TFG absorption is much higher in the small intestine than in the colon, and the TFG is absorbed mainly via an active transport pathway with MRP-mediated efflux mechanism. Camphor obviously enhanced the TFG absorption, and this could be an effective TFG formulation preparation method to increase clinical effectiveness after Genkwa Flos administration. Our study elucidated the TFG absorption mechanisms, and provided new information for its formulation preparation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app