Add like
Add dislike
Add to saved papers

Proteomics of Staphylococcus aureus biofilm matrix in a rat model of orthopedic implant-associated infection.

The matrix proteins of Staphylococcus aureus biofilm have not been well defined. Previous efforts to identify these proteins were performed using in vitro systems. Here we use a proteomic approach to identify biofilm matrix proteins directly from infected bone implants using a rat model of orthopedic implant-associated S. aureus infection. Despite heavy presence of host proteins, a total of 28 and 105 S. aureus proteins were identified during acute infection and chronic infection, respectively. Our results show that biofilm matrix contains mostly intracellular cytoplasmic proteins and, to a much less extent, extracellular and cell surface-associated proteins. Significantly, leukocidins were identified in the biofilm matrix during chronic infection, suggesting S. aureus is actively attacking the host immune system even though they are protected within the biofilm. The presence of two surface-associated proteins, Ebh and SasF, in the infected bone tissue during acute infection was confirmed by immunohistochemistry. In addition, a large number of host proteins were found differentially expressed in response to S. aureus biofilm formed on bone implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app