Journal Article
Multicenter Study
Add like
Add dislike
Add to saved papers

Sequence configuration of spinocerebellar ataxia type 8 repeat expansions in a Japanese cohort of 797 ataxia subjects.

Spinocerebellar ataxia type 8 (SCA8), an autosomal dominant neurodegenerative disorder showing slowly progressive cerebellar ataxia, is caused by a tri-nucleotide CTG repeat expansion (CTGexp) in the SCA8 gene. As the CTGexp is not fully penetrant, the significance of screening CTGexp in ataxia subjects remains obscure. We tested SCA8 CTGexp in a cohort of 797 ataxia subjects, and if present, its sequence configuration was analyzed. CTGexp was found in 16 alleles from 14 individuals, 2 of which was homozygous for CTGexp. Nucleotide sequencing disclosed 3 types of CTGexp sequence configurations: uninterrupted CTGexp, tri-nucleotide CTA interruption and CCG interruption. The 2 individuals with homozygous expansions were both sporadic cases with clinical features compatible with SCA8, supporting gene dosage effect. Seven out of 14 CTGexp-positive subjects were also carriers of other SCA expansions [Machado-Joseph disease (n=1), SCA6 (n=3) and SCA31 (n=3)], whereas 7 others were not complicated with such major SCAs. Ages of onset in subjects with pure CTGexp tended to be earlier than those with interrupted CTGexp among the 7 subjects not complicated by major SCAs, suggesting that pure CTGexp have stronger pathogenic effect than interrupted CTGexps. The present study underscores importance of disclosing sequence configuration when testing SCA8.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app