Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Phylogeography and connectivity of molluscan parasites: Perkinsus spp. in Panama and beyond.

Panama is a major hub for commercial shipping between two oceans, making it an ideal location to examine parasite biogeography, potential invasions, and the spread of infectious agents. Our goals were to (i) characterise the diversity and genetic connectivity of Perkinsus spp. haplotypes across the Panamanian Isthmus and (ii) combine these data with sequences from around the world to evaluate the current phylogeography and genetic connectivity of these widespread molluscan parasites. We collected 752 bivalves from 12 locations along the coast of Panama including locations around the Bocas del Toro archipelago and the Caribbean and Pacific entrances to the Panama Canal, from December 2012 to February 2013. We used molecular genetic methods to screen for Perkinsus spp. and obtained internal transcribed spacer region (ITS) ribosomal DNA (rDNA) sequences for all positive samples. Our sequence data were used to evaluate regional haplotype diversity and distribution across both coasts of Panama, and were then combined with publicly available sequences to create global haplotype networks. We found 26 ITS haplotypes from four Perkinsus spp. (1-12 haplotypes per species) in Panama. Perkinsus beihaiensis haplotypes had the highest genetic diversity, were the most regionally widespread, and were associated with the greatest number of hosts. On a global scale, network analyses demonstrated that some haplotypes found in Panama were cosmopolitan (Perkinsus chesapeaki, Perkinsus marinus), while others were more geographically restricted (Perkinsus olseni, P. beihaiensis), indicating different levels of genetic connectivity and dispersal. We found some Perkinsus haplotypes were shared across the Isthmus of Panama and several regions around the world, including across ocean basins. We also found that haplotype diversity is currently underestimated and directly related to the number of sequences. Nevertheless, our results demonstrate long-range dispersal and global connectivity for many haplotypes, suggesting that dispersal through shipping probably contributes to these biogeographical patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app