Add like
Add dislike
Add to saved papers

Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells.

Crosstalk among brain endothelial cells (BECs), pericytes, and astrocytes occurs by way of soluble factors, including cytokines. Here, we studied cytokine secretion from both mouse BEC monocultures and tri-cultured with pericytes and astrocytes. Four cytokines were constitutively secreted by BEC monolayers, 12 by LPS-stimulated BECs, 10 by tri-cultures, and 14 by LPS-stimulated tri-cultures. Cytokine levels were generally higher with either LPS stimulation or tri-culture when compared to monocultures and highest in tri-cultures stimulated by LPS. LPS-stimulated secretions fell into eight patterns as categorized by the polarization of cytokine secretions. To determine the cellular origin of cytokine increases in tri-cultures, we cultured mouse BECs with human pericytes and astrocytes and measured cytokines in species-specific assays. Thus, cytokines detected in the human immunoassay were from pericytes/astrocytes and those detected in the mouse immunoassay were from BECs. Several unique patterns were thus found. For example, TNF-alpha was only of pericyte/astrocyte origin; granulocyte colony-stimulating factor was only of BEC origin; IL-6, MCP-1, and GM-CSF of astrocyte/pericyte origin were found in both the luminal and abluminal chambers, suggesting the presence of brain-to-blood transporters. We conclude that crosstalk influences cytokine secretion under constitutive and stimulated conditions from both BECs and pericytes/astrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app