Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Capsaicin-Inspired Thiol-Ene Terpolymer Networks Designed for Antibiofouling Coatings.

Novel photocurable ternary polymer networks were prepared by incorporating N-(4-hydroxy-3-methoxybenzyl)-acrylamide (HMBA) into a cross-linked thiol-ene network based on poly(ethylene glycol)diacrylate (PEGDA) and (mercaptopropyl)methylsiloxane homopolymers (MSHP). The ternary network materials displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and reduced the attachment of marine organism Phaeodactylum tricornutum. Extensive soaking of the polymer networks in aqueous solution indicated that no active antibacterial component leached out of the materials, and thus the ternary thiol-ene coating killed the bacteria by surface contact. The surface structures of the polymer networks with varied content ratios were studied by sum frequency generation (SFG) vibrational spectroscopy. The results demonstrated that the PDMS Si-CH3 groups and mimic-capsaicine groups are predominantly present at the polymer-air interface of the coatings. Surface reorganization was apparent after polymers were placed in contact with D2 O: the hydrophobic PDMS Si-CH3 groups left the surface and returned to the bulk of the polymer networks, and the hydrophilic PEG chains cover the polymer surfaces in D2 O. The capasaicine methoxy groups are able to segregate to the surface in an aqueous environment, depending upon the ratio of HMBA/PEGDA. SFG measurements in situ showed that the antibacterial HMBA chains, rather than the nonfouling PEG, played a dominant role in mediating the antibiofouling performance in this particular polymer system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app