Add like
Add dislike
Add to saved papers

Coulometry and Calorimetry of Electric Double Layer Formation in Porous Electrodes.

Physical Review Letters 2017 October 21
Coulometric measurements on salt-water-immersed nanoporous carbon electrodes reveal, at a fixed voltage, a charge decrease with increasing temperature. During far-out-of-equilibrium charging of these electrodes, calorimetry indicates the production of both irreversible Joule heat and reversible heat, the latter being associated with entropy changes during electric double layer (EDL) formation in the nanopores. These measurements grant experimental access-for the first time-to the entropic contribution of the grand potential; for our electrodes, this amounts to roughly 25% of the total grand potential energy cost of EDL formation at large applied potentials, in contrast with point-charge model calculations that predict 100%. The coulometric and calorimetric experiments show a consistent picture of the role of heat and temperature in EDL formation and provide hitherto unused information to test against EDL models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app