Add like
Add dislike
Add to saved papers

Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae.

Bioresource Technology 2018 Februrary
The effects of an enzymatic treatment with cellulase and mannanase on the properties of marine microalgae Nannochloropsis sp. were investigated. The combined use of these enzymes synergistically promoted the recovery of lipids from the microalgae, increasing the extraction yield from 40.8 to over 73%. Untreated and enzymatically treated microalgae were characterized by chemical analysis and by TGA/DTG, FTIR, XRD and SEM. Significant changes were observed in the chemical composition and thermal behavior of the microalgae. The enzymatic treatment also resulted in an increase of the crystalline-to-amorphous cellulose ratio. SEM images revealed dramatic changes in cell morphology, extensive cell damage and release of intracellular material. Overall, the results obtained indicate that the enzymes used are capable of disrupting the microalgal cell wall and that a combination of common analytical techniques can be used to assess the enzyme-induced damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app