Add like
Add dislike
Add to saved papers

Resolving and Tuning Carrier Capture Rates at a Single Silicon Atom Gap State.

ACS Nano 2017 November 29
We report on tuning the carrier capture events at a single dangling bond (DB) midgap state by varying the substrate temperature, doping type, and doping concentration. All-electronic time-resolved scanning tunneling microscopy (TR-STM) is employed to directly measure the carrier capture rates on the nanosecond time scale. A characteristic negative differential resistance (NDR) feature is evident in the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of DBs on both n- and p-type doped samples. We find that a common model accounts for both observations. Atom-specific Kelvin probe force microscopy (KPFM) measurements confirm the energetic position of the DB's charge transition levels, corroborating STS studies. We show that under different tip-induced fields the DB can be supplied with electrons from two distinct reservoirs: the bulk conduction band and/or the valence band. We measure the filling and emptying rates of the DBs in the energy regime where electrons are supplied by the bulk valence band. We show that adding point charges in the vicinity of a DB shifts observed STS and NDR features due to Coulombic interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app