Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TGF-β pro-oligodendrogenic effects on adult SVZ progenitor cultures and its interaction with the Notch signaling pathway.

Glia 2018 Februrary
Adult neural progenitor cells (NPCs) are capable of differentiating into neurons, astrocytes, and oligodendrocytes throughout life. Notch and transforming growth factor β1 (TGF-β) signaling pathways play critical roles in controlling these cell fate decisions. TGF-β has been previously shown to exert pro-neurogenic effects on hippocampal and subventricular zone (SVZ) NPCs in vitro and to interact with Notch in different cellular types. Therefore, the aim of our work was to study the effect of TGF-β on adult rat brain SVZ NPC glial commitment and its interaction with Notch signaling. Initial cell characterization revealed a large proportion of Olig2+, Nestin+, and glial fibrillary acidic protein (GFAP+) cells, a low percentage of platelet-derived growth factor receptor α (PDGFRα+) or NG2+ cells, and <1% Tuj1+ cells. Immunocytochemical analyses showed a significant increase in the percentage of PDGFRα+, NG2+, and GFAP+ cells upon four-day TGF-β treatment, which demonstrates the pro-gliogenic effect of this growth factor on adult brain SVZ NPCs. Real-time polymerase chain reaction analyses showed that TGF-β induced the expression of Notch ligand Jagged1 and downstream gene Hes1. Notch signaling inhibition in cultures treated with TGF-β produced a decrease in the proportion of PDGFRα+ cells, while TGF-β receptor II (TβRII) inhibition also rendered a decrease in the proportion of PDGFRα+ cells, concomitantly with a decrease in Jagged1 levels. These findings demonstrate the participation of Notch signaling in TGF-β effects and illustrate the impact of TGF-β on glial cell fate decisions of adult brain SVZ NPCs, as well as on oligodendroglial progenitor cell proliferation and maturation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app