Add like
Add dislike
Add to saved papers

Ameliorative effects of curcumin towards cyclosporine-induced genotoxic potential: an in vitro and in silico study.

Several studies documented the ameliorative effects of curcumin which plays a pivotal role in radical scavenging activities. It also participates in various cellular pathways and interacts with multiple targets. In the present study, we investigated the ameliorative effect of curcumin upon chromosomal genotoxicity induced by cyclosporine, an immunosuppressant, using in vitro approaches. A plausible mechanism of how curcumin mitigates the genotoxic implications of cyclosporine was ascertained using in silico tools. We observed that the curcumin reduces the genotoxic consequences made by cyclosporine upon cell cycle checkpoints and associated chromosomal/DNA manifestations. In addition, we presented the mechanistic details of curcumin interaction with various biomacromolecule types using docking experiments which showed that the possible radical scavenging activities can only be emerged by inducing the expression of antioxidant enzymes, supported by available experimental evidences. We anticipate that the induction of antioxidant enzymes by curcumin would activate Nrf2-Keap1 pathway as the plausible mechanism to exert anti-inflammatory response as demonstrated in renal epithelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app