Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reconsidering Water Electrolysis: Producing Hydrogen at Cathodes Together with Selective Oxidation of n-Butylamine at Anodes.

ChemSusChem 2017 December 23
Electrocatalysis for the oxygen evolution reaction (OER) is of great interest for improving the effectiveness of water splitting devices. Decreasing the anodic overpotential and simultaneously changing the anodic reaction selectively to produce valuable chemicals instead of O2 would be a major improvement of the overall cost efficiency. Some amines, when present in aqueous electrolytes, were recently shown to change the selectivity of the anodic process to generate H2 O2 rather than O2 on MnOx at pH 10. This results in unusually high apparent "anodic activities". In this work, industrially relevant OER catalysts, oxyhydroxides of cobalt (CoOx ), nickel-iron (NiFeOx ), and nickel (NiOx ) all show more pronounced effects. Moreover, as anodes they also selectively catalyzed the production of nbutyronitrile from n-butylamine at higher pH as an easily retrievable valuable product. The pH dependence of the activity was investigated at pH values closer those at which alkaline electrolyzers operate. The highest activities were observed for NiOx thin-film electrodes at pH 12 in the presence of 0.4 m n-butylammonium sulfate, without poisoning the active sites of Pt electrocatalysts at the hydrogen evolution electrode. 1 H NMR spectroscopy showed that n-butylamine is selectively oxidized to n-butyronitrile, an organic chemical with numerous applications. However, measurements using rotating ring-disk electrodes indicated that some H2 O2 is also generated at the surface of the oxide anodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app