Add like
Add dislike
Add to saved papers

Reflectance bandwidth and efficiency improvement of light-emitting diodes with double-distributed Bragg reflector.

Applied Optics 2017 May 21
Distributed Bragg reflectors (DBR) with metal film on the bottom have been demonstrated to further improve the light output power of GaN-based light-emitting diodes (LEDs). Periods of TiO2 /SiO2 stacks, thickness of metal film, and material of metallic reflector were designed and optimized in simulation software. The maximal bandwidth of double-DBR stacks have reached up to 272 nm, which was 102 nm higher than a single-DBR stack. The average reflectance of LEDs with wavelength from 380 nm to 780 nm in double-DBR stacks is 95.09% at normal incident, which was much higher than that of a single-DBR stack whose average reflectance was 91.38%. Meanwhile, maximal average reflectance of LEDs for double-DBR stacks with an incident angle from 0 to 90° was 97.41%, which was 3.2% higher than that of a single-DBR stack with maximal average reflectance of 94.21%. The light output power of an LED with double-DBR stacks is 3% higher than that of an LED with a single-DBR stack, which was attributed to high reflectance of double-DBR stacks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app