Add like
Add dislike
Add to saved papers

Nonlinear photonics on-a-chip in III-V semiconductors: quest for promising material candidates.

Applied Optics 2017 July 2
We propose several designs of nonlinear optical waveguides based on quaternary III-V semiconductors AlGaAsSb and InGaAsP. These semiconductor materials have been widely used for laser sources. Their nonlinear optical properties, however, yet remain unexplored, while the materials definitely hold promise for nonlinear photonics on-a-chip. The latter argument is based on the fact that III-V compounds tend to exhibit high values of the nonlinear optical susceptibilities, while the nonlinear absorption in these materials can be minimized in the wavelength range of interest through a proper selection of the material composition. We present the modal analysis for the designed waveguide structures and show that the effective mode area much less than 1  μm2 can be achieved through a design optimization in each of the two compounds. We also present specific waveguide designs that demonstrate zero dispersion at the wavelengths of interest. The designed AlGaAsSb and InGaAsP waveguides are thus expected to demonstrate high values of the nonlinear coefficient and efficient nonlinear optical interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app