Add like
Add dislike
Add to saved papers

Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of Avian Pathogenic Escherichia coli and its synergy with colistin.

Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)3(tpa-κ3N)]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic Escherichia coli (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic E. coli. The in vitro activity of [Mn(CO)3(tpa-κ3N)]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. In vivo antibacterial activity of [Mn(CO)3(tpa-κ3N)]Br alone and in combination with colistin was determined using the Galleria mellonella wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. In vitro testing produced relatively high [Mn(CO)3(tpa-κ3N)]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to ≤32 mg/L. This synergy was confirmed in time-kill assays. In vivo assays showed that the combination of [Mn(CO)3(tpa-κ3N)]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both in vitro and in vivo assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)3(tpa-κ3N)]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app