Add like
Add dislike
Add to saved papers

MicroRNA‑663 suppresses the proliferation and invasion of colorectal cancer cells by directly targeting FSCN1.

Colorectal cancer (CRC) is the most frequently diagnosed malignancy of the gastrointestinal tract. The dysregulation of microRNAs (miRNAs/miRs) has been reported in the majority of types of human cancer, and is correlated with tumorigenesis and tumor development. Abnormal expression of miR‑663 has been observed in various types of human cancer. However, little is known about its role in CRC. Therefore, the aim of the present study was to clarify the expression and potential role of miR‑663, and its underlying molecular mechanism in CRC. It was observed that miR‑663 was markedly downregulated in CRC tissues and cell lines. Decreased miR‑663 expression levels in CRC tissues were correlated with tumor, node, metastasis stage and lymph node metastasis. Functional assays revealed that upregulation of miR‑663 inhibited cell proliferation and invasion in CRC. Further molecular mechanism assays demonstrated the fascin (FSCN1) was a target gene of miR‑663. In addition, FSCN1 was increased and negatively correlated with miR‑663 expression in CRC tissues. FSCN1 underexpression mimicked the tumor suppressive functions induced by miR‑663 overexpression on CRC cell proliferation and invasion. Collectively, the present study presented evidence that miR‑663 may act as a tumor suppressor in CRC by directly targeting FSCN1, which may lead to a potential therapeutic strategy focusing on miR‑663 and FSCN1 for patients with this disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app