Add like
Add dislike
Add to saved papers

Effects of conjugated linoleic acid/n-3 and resistance training on muscle quality and expression of atrophy-related ubiquitin ligases in middle-aged mice with high-fat dietinduced obesity.

PURPOSE: To investigate the effects of conjugated linoleic acid (CLA)/n-3 supplements and resistance exercise training (RT) for 20 weeks on muscle quality and genes related to protein synthesis/degradation in middle-aged mice with high-fat diet (HFD)-induced obesity.

METHODS: Nine-month-old C57BL/6 male mice were randomly assigned to five groups: 1) normal diet (C), 2) high-fat diet (H), 3) H+RT (HRT), 4) H+CLA/n-3 (H-CN), and 5) H+RT+CLA/n-3 (H-RTCN). HFD groups were given a diet containing 60% fat for 20 weeks, and exercised groups underwent progressive RT using weighted ladder climbing. The CLA/n-3 mixed diet contained 1% CLA and 1% n-3. Grip strength was assessed, and triceps were removed. RT-PCR was used to analyze transcript levels.

RESULTS: Grip strength of the H group was significantly lower than that of the C group; however, those in the H-CN, H-RT, and H-RTN groups were significantly greater than that in the H group. However, the muscle quality was significantly greater only in the H-RT group compared with the H and H-CN groups. Akt expression decreased in the H-CN, H-RT, and H-RTCN groups compared with those in the C and H groups, whereas mammalian target of rapamycin expression increased in the H, H-CN, H-RT, and H-RTCN groups compared with that in the C group. However, atrogin1 was significantly downregulated in the H-RTCN group compared with that in the H and H-CN groups, and MuRF1 expression was also decreased in the H-RT and H-RTCN groups. Interestingly, atrogin1 and MuRF1 were downregulated in the H-RTCN group compared with that in the H-CN group.

CONCLUSION: HFD-mediated gene expression involved in protein degradation was attenuated following 20-week RT with CLA/n-3. Furthermore, RT with or without CLA/n-3 improved grip strength and muscle quality in middle-aged mice during HFD. Therefore, RT with CLA/n-3 during HFD may improve muscle strength and quality by suppressing protein degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app