Add like
Add dislike
Add to saved papers

Gene expression and morphological changes in the intestinal mucosa associated with increased permeability induced by short-term fasting in chickens.

Short-term fasting for 4.5 and 9 hr has been demonstrated to increase intestinal permeability (IP) in chickens. This study aimed to investigate the effects of 0, 4.5, 9 and 19.5 hr fasting on intestinal gene expression and villus-crypt architecture of enterocytes in jejunal and ileal samples. On day 38, Ross-308 male birds were fasted according to their group and then euthanised. Two separate intestinal sections (each 2 cm long, jejunum and ileum) were collected. One section was utilised for villus height and crypt depth measurements. The second section was snap-frozen in liquid nitrogen for quantitative polymerase chain reaction (qPCR) analysis of tight junction proteins (TJP) including claudin-1, claudin-3, occludin, zonula occludens (ZO-1, ZO-2), junctional adhesion molecules (JAM) and E-cadherin. Additionally genes involved in enterocyte protection including glucagon-like peptide (GLP-2), heat-shock protein (HSP-70), intestinal alkaline phosphatase (IAP), mammalian target of rapamycin (mTOR), toll-like receptors (TLR-4), mucin (MUC-2), cluster differentiation (CD-36) and fatty acid-binding protein (FABP-6) were also analysed. Normally distributed data were analysed using one-way analysis of variance ANOVA. Other data were analysed by non-parametric one-way ANOVA. Villus height and crypt depth were increased (p < .05) only in the ileum after fasting for 4.5 and 9 hr compared with non-fasting group. mRNA expression of claudin-3 was significantly reduced in the ileum of birds fasted for 9 and 19.5 hr, suggesting a role in IP modulation. However, all other TJP genes examined were not statistically different from control. Nevertheless, ileal FABP-6 of all fasted groups was significantly reduced, which could possibly be due to reduced bile acid production during fasting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app