Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design, synthesis and biological evaluation of 2-acetyl-5-O-(amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer's disease.

A series of 2-acetyl-5-O-(amino-alkyl)phenol derivatives was designed, synthesized and evaluated as multi-function inhibitors for the treatment of Alzheimer's disease (AD). The results revealed that compound TM-3 indicated selective AChE inhibitory potency (eeAChE, IC50  = 0.69 μM, selective index (SI) = 32.7). Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-3 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. And TM-3 was also a highly selective MAO-B inhibitor (IC50  = 6.8 μM). Moreover, TM-3 could act as antioxidant (ORAC value was 1.5eq) and neuroprotectant, as well as a selective metal chelating agent. More interestingly, compound TM-3 could cross the blood-brain barrier (BBB) in vitro and abided by Lipinski's rule of five. Therefore, compound TM-3, a promising multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app