Add like
Add dislike
Add to saved papers

Development of a graphene oxide/chitosan nanocomposite for the removal of picric acid from aqueous solutions: Study of sorption parameters.

The functionalization of graphene oxide (GO) with chitosan (Chi) has been investigated to prepare a nanocomposite material (GO-Chi) for the removal of picric acid from aqueous solutions. Materials were characterized by FT-IR, TGA, DTG, FESEM, EDX, XRD and BET. Batch experiments such as solution pH, amount of adsorbents, contact time, concentration of the picric acid and temperature were achieved to study sorption process. Kinetic studies were well described by pseudo-second-order kinetic model for both adsorbents. Isotherm studies showed that the Langmuir isotherm for GO and Freundlich and Halsey models for GO-Chi were found to best represent the measured sorption data. Negative ΔG° values for GO-Chi and positive ones for GO indicated the nature of spontaneous and unspontaneous, respectively for adsorption process. In addition, picric acid molecules can be desorbed from GO-Chi up to 80% at pH=9 and that the consumed GO-Chi could be reutilized up to 5th cycle of regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app