Add like
Add dislike
Add to saved papers

No evidence of increased growth or mortality in fish exposed to oxazepam in semi-natural ecosystems.

An increasing number of short-term laboratory studies on fish reports behavioral effects from exposure to aquatic contaminants or raised carbon dioxide levels affecting the GABAA receptor. However, how such GABAergic behavioral modifications (GBMs) impact populations in more complex natural systems is not known. In this study, we induced GBMs in European perch (Perca fluviatilis) via exposure to a GABA agonist (oxazepam) and followed the effects on growth and survival over one summer (70days) in replicated pond ecosystems. We hypothesized that anticipated GBMs, expressed as anti-anxiety like behaviors (higher activity and boldness levels), that increase feeding rates in laboratory assays, would; i) increase growth and ii) increase mortality from predation. To test our hypotheses, 480 PIT tagged perch of known individual weights, and 12 predators (northern pike, Esox lucius) were evenly distributed in 12 ponds; six control (no oxazepam) and six spiked (15.5±4μgl-1 oxazepam [mean±1S.E.]) ponds. Contrary to our hypotheses, even though perch grew on average 16% more when exposed to oxazepam, we found no significant difference between exposed and control fish in growth (exposed: 3.9±1.2g, control: 2.9±1g [mean±1S.E.], respectively) or mortality (exposed: 26.5±1.8individuals pond-1 , control: 24.5±2.6individuals pond-1 , respectively). In addition, we show that reduced prey capture efficiency in exposed pike may explain the lack of significant differences in predation. Hence, our results suggest that GBMs, which in laboratory studies impact fish behavior, and subsequently also feeding rates, do not seem to generate strong effects on growth and predation-risk in more complex and resource limited natural environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app