Add like
Add dislike
Add to saved papers

Assessing the mechanical properties of anisotropic soft tissues using guided wave elastography: Inverse method and numerical experiments.

Determining the mechanical properties of soft biological tissues can be of great importance. For example, the microstructures of many soft tissues, such as those of the human Achilles tendon, have been identified as typical anisotropic materials. This paper proposes an inverse approach that uses guided wave elastography to determine the anisotropic elastic and hyperelastic parameters of thin-walled transversely isotropic biological soft tissues. This approach was developed from the theoretical solutions for the dispersion relations of guided waves, which were derived based on a constitutive model suitable for describing the deformation behavior of such tissues. The properties of these solutions were investigated; in particular, sensitivity to data errors was addressed by introducing the concept of the condition number. To further validate the proposed inverse approach, the guided wave elastography of thin-walled transversely isotropic soft tissues was investigated using numerical experiments. The results indicated that the four constitutive parameters (other than the tensile modulus along the direction of the fibers, EL) could be determined with a good level of accuracy using this method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app