Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Graphene Ingestion and Regrowth on "Carbon-Starved" Metal Electrodes.

ACS Nano 2017 October 25
The interaction between graphene and various metals plays a central role in future carbon-based device and synthesis technologies. Herein, three different types of metal nanoelectrodes (W, Ni, Au) were employed to in situ study the graphene-metal interfacial kinetic behaviors in a high-resolution transmission electron microscope. The three metals exhibit distinctly different interactions with graphene when driven by a heating current. Tungsten tips, the most carbon-starved ones, can ingest a graphene sheet continuously; nickel tips, less carbon starved, typically "eat" graphene only by taking a "bite" from its edge; gold, however, is nonactive with graphene at all, even in its molten state. The ingested graphene atoms finally precipitate as freshly formed graphitic shells encapsulating the catalytic W and Ni electrodes. Particularly, we propose a periodic extension/thickening graphene growth scenario by atomic-scale observation of this process on W electrodes, where the propagation of the underlying tungsten carbide (WC) dominates the growth dynamics. This work uncovers the complexity of carbon diffusion/segregation processes at different graphene/metal interfaces that would severely degrade the device performance and stability. Besides, it also provides a detailed and insightful understanding of the sp2 carbon catalytic growth, which is vital in developing efficient and practical graphene synthetic routes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app