Add like
Add dislike
Add to saved papers

A biologically inspired neurocomputational model for audiovisual integration and causal inference.

Recently, experimental and theoretical research has focused on the brain's abilities to extract information from a noisy sensory environment and how cross-modal inputs are processed to solve the causal inference problem to provide the best estimate of external events. Despite the empirical evidence suggesting that the nervous system uses a statistically optimal and probabilistic approach in addressing these problems, little is known about the brain's architecture needed to implement these computations. The aim of this work was to realize a mathematical model, based on physiologically plausible hypotheses, to analyze the neural mechanisms underlying multisensory perception and causal inference. The model consists of three layers topologically organized: two encode auditory and visual stimuli, separately, and are reciprocally connected via excitatory synapses and send excitatory connections to the third downstream layer. This synaptic organization realizes two mechanisms of cross-modal interactions: the first is responsible for the sensory representation of the external stimuli, while the second solves the causal inference problem. We tested the network by comparing its results to behavioral data reported in the literature. Among others, the network can account for the ventriloquism illusion, the pattern of sensory bias and the percept of unity as a function of the spatial auditory-visual distance, and the dependence of the auditory error on the causal inference. Finally, simulations results are consistent with probability matching as the perceptual strategy used in auditory-visual spatial localization tasks, agreeing with the behavioral data. The model makes untested predictions that can be investigated in future behavioral experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app